SOUND EMISSION IN A NONEQUILIBRIUM MEDIUM
FROM A PLANE SURFACE WITH PERIODICALLY
VARYING TEMPERATURE

A. S, Pleshanov UDC 530.161 :534 .2

Any change in temperature T of a continuous medium is accompanied by a change in its den-
sity p, which gives rise to motion and, in particular, to sound emission. This question, which
has been examined for the usual equilibrium medium, in [1], for instance, is extended in the
present paper to the case of a nonequilibrium medium.

L

By a nonequilibrium medium we mean a medium in which there occur processes of energy redistri-
bution among the different degrees of freedom of the particles (translational, internal, chemical), leading
to relaxation of the macroscopic characteristics (specific heats Cp and cy, thermal conductivity », sound
velocity c). The most rapid process is the redistribution of energy among the translational degrees of
freedom, The relaxation time of this process 7, ~ A/c, where A is the mean free path, The other energy
redistribution processes are much slower. The effects occurring in a nonequilibrium medium can be
phenomenologically described within the framework of thermodynamically irreversible processes, where
the hydrodynamic equations are supplemented with expressions for the stress tensor of the thermal (q)
and diffusion (1) fluxes, and also of the scalar (chemical) flux through the strain velocity tensor, the gra-
dient T, and chemical potential ;. These expressions are obtained by an appropriate choice of fluxes and
force from the condition of  increase in entropy s, using the Curie principle and Onsager relations [2].
The system of equations is closed by the kinetic equation for the nonequilibrium parameter ¢; the deriva-
tive of the characteristic thermodynamic potential with respect to ¢ is @& =pu.

In the linear simultaneous approximation with zero mean velocity v the equation for production of s
has the form [2]

p(T's;+1&;) +gx=0, (1)
where the subscripts denote partial differentiation, This equation agrees with the more general equation

[2] to the accuracy of the small nonlinear term proportional to y>. Taking as¢ the thermodynamic poten-
tial proper in variables p, T, and £ (p is the pressure), we obtain, for p = const,

Ts;+ w8 =Tspe Ty +(Toss+ 108 =cpoc Ty s &, : 2)

where w is the enthalpy, and the subscript « refers to the frozen state (the subscript 0 below refers to the
equilibrium state),
For q and I, ignorfng the small thermal-diffusion correction, we have the expressions [1, 2]

qz—‘xauTx’i‘w'éI; Iz_pDEw (3)

where D > 0 is the coefficient of diffusion.
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Finally, the kinetic equation for ¢ has the form [2]

ok, I+ Mu=0, 4)

where M > 0 is the kinetic coefficient. For small deviations from equilibrium we perform the expansion

u=@z=gzr T’ ¢z, )

where the dashes refer to perturbations.

The system of equations (1)-(5) is closed and completely describes the simultaneous processes of
heat conduction and diffusion in a nonequilibrium medium,

We establish relations between equilibrium and frozen quantities, For the equilibrium variation of
g, with T we have from (5)

-5

(Qs_o) = r _ %
Y Pee Py

Then, from (2) and (3) we obtain
Cpp — Cpoo = ng/pg >0, (6)
';to — e = pD’j."sé-"uE >0,

where u¢ > 0, in view of thermodynamic stability [2]. It follows from (6) that

_.7;‘.’_ o pD. (7)

Introducing the critirion L =D/y [x =¥ /(pcp) is thethermal diffusivity], we have from (6) and (7) for L; <
1 the inequalities Ly, < Iy <1 or D < y; < X, for Ly > 1 the inequalities 1 < L, < L, or xo <X < D, ie,
L, is always closer to 1 than L. From the estimate L = (6/5) (y/f), where v is the ratio of specific
heats, f is the kinetic function, equal to 5/2 for Maxwellian molecules and having a minimum value of 1.41
for NH; [3], it follows that the situation 1, <1, i.e., X4 < X, iS more common than the situation Ly < 1,

Putting (4) in the form
] a2\ . , .
n (g — D) B (8 =) =0,

where
Ty = /(M pz) > 0 and

b=(7) =T
P

Re
we obtain for g and T the equation
a 22 , ,
T (’07— Dgp) (¢ + #aTs) 4 (g + %, Ty} = 0.

For any of the functions u =T, ¢, q, and I we have the generalized thermal conductivity equation
[Ty = (Cpoo/cpo) 7]

oo 3 AV IR o2
L(u)=[12(W-DE¢5)('37'—%*972)+(‘a?_%o§;z)]u=0- (8)

In the non-one-dimensional case (8 /6x)? can be replaced by the Laplacian; in the presence of transfer
9 /ot becomes 98 /6t + (vV), Equation (8) is of the fourth order in coordinate and, hence, we require four
boundary conditions, which can be assigned boundary values of T, &, and q, I.
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Fig. 1 Fig. 2

We turn o the specific problem, Let the small variable part of the temperature of the plane surface
vary according to the law T'we'lwt, where wis the oscillation frequency. Then temperature-diffusion waves
proportional to exp[i(kx — wt}j] will propagate in the nonequilibrium medium, The dispersion equation for
the wave number k is obtained from (8) and has the form

To(—i0+DE?) (—io+yok?)-(—iw+yh?)=0.

For the decaying waves when x — « we have two solutions with Im(k) > 0. For perturbation of any value
of u we have

2 . i(hp—atl)
u = 3 ue ! .
=1

The perturbation amplitudes uY are found from the boundary conditions, for which we take
T7(0,8) = Te™™, . 10, t) =0,

ie., we assume that the boundary surface is impermeable to the surrounding substance. The expressions
T'l and ¢; are connected by a relation derived from (1)-(3),

Cpon (= 10 + 1k} T1 4 w (— 0 -+ DY) E = 0.
In the special cases where 7, — 0 and «, the generated waves are purely temperature waves, In
the general case two temperature-diffusion waves propagate.

For the validity of the adopted macroscopic description we must have the inequality w7, «< 1, i.e.,
in view of the known estimate y ~ c? Ty, We must have w < c? /x, which means a low-frequency approxima-
tion. On the other hand, this means that the perturbation wavelength 1 /k ~ V¥/w <« ¢/w— the length of the
sound wave, Thus, we arrive at the separation of the considered temperature-diffusion and hydrodynamic

(acoustic) problems [1], In particular, the boundary value of v' inthe hydrodynamic problem will be the
value of v! when x — « in the temperature-diffusion problem.

The relationship connecting U' with T' and ¢' is obtained from the continuity equation

PU:x- = - P; = = Ppgy T; - P;E; = i® (PT,OT/ = 9521)7

so that when v'(0, t) = 0 we have

v (>, 1) =io (pToo \ Tdx - Ps Y Edr /p.
0 0 S

The required intensity of sound emission from unit surface is [1]

I=pc v (o0, 8)2>.
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In the general case the solution has the form (R =— iw)

@t by kg 1 (Xeo — %a) 8/ Ds) )

Ve, t) = - QpT e {ktky 1+ (K — D) Tekikyle’

where
Boe=—0T0/p; 0=(Cpoc/preo}pr/wys);
g= (1/Ly — 1) + (1/ Loy — 1) Q1,;

QU+ Q
k1k2 = ]/‘—-(sz)( T2).

When w — 0 and «(9) takes the form [1]
U, (OC’ t) - — C]/ET;Jegtv

where ¢ = B‘/;(_has equilibrium and frozen values, respectively. For proof of the limiting expressions we use
the relations

which follow from [7], and the thermodynamic relation

Pry —Preo _f_)t_
Con ™ Cpe We

Interpreting ¢ as the extent of the chemical reaction, we obtain for an ideal gas

f‘“;ﬁm v, (10)

where R is the gas constant: v = ;vk is the overall stoichiometric coefficient of the reaction; Qp =

};vhwh is its molar thermal effect when p = const,

2 — 2
1 g% 2 1 (Vs2hr = Vpzy)
WHETE*V -7; P

Xy is the mole fraction of the component K.

The maximum value of |V & is

IVI (Dmax ==

&

where Yk, = = 0. For instance, for the dissociation reaction K, +K, + K; = 0, Expression (10) has the form

%

RT

|5n_5m|_a(1——a)
| B | 2

where o is the degree of dissociation; Qp ="W; + W, + Wj,

1 1@

It follows from the presented expressions that when Iy, 1 and Qp =0 we have ¢, s¢,. For reac-
tions involving a fairly large heat effect at not very high temperatures the difference between gpand £
can be fairly appreciable, so that the temperature generation of low-frequency sound (infrasound) in an
equilibrium-reacting medium may differ significantly in principle from that in an ordinary medium. This
is illustrated by Figs.1and2,where sample relationships between the intensity of sound and its frequency,
based on two different assumptions, are shown,
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